Your browser doesn't support the features required by impress.js, so you are presented with a simplified version of this presentation.
For the best experience please use the latest Chrome , Safari or Firefox browser.
\[
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IRnn}{\IR_{\geq 0}}
\newcommand{\IRp}{\IR_{\gt 0}}
\newcommand{\IN}{\mathbb{N}}
\newcommand{\INo}{\IN_0}
\newcommand{\INs}{\IN^\ast}
\newcommand{\coloneqq}{\mathbin{:=}}
\newcommand{\eqqcolon}{\mathbin{=:}}
\newcommand{\coloniff}{\mathbin{:\!\!\iff}}
\newcommand{\faa}{\mathbin{\forall_{\!\mathrm{a.a.}}}}
\newcommand{\dcup}{\mathbin{\dot\cup}}
\newcommand{\sMid}{\,|\,}
\newcommand{\Set}[1]{\left\lbrace#1\right\rbrace}
\newcommand{\SMid}{\,\middle|\,}
\newcommand{\abs}[1]{\lvert#1\rvert}
\newcommand{\Abs}[1]{\left\lvert#1\right\rvert}
\newcommand{\norm}[1]{\lVert#1\rVert}
\newcommand{\Norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\PSet}[1]{2^{#1}}
\newcommand{\transp}{^\top}
\newcommand{\eps}{\varepsilon}
\newcommand{\diff}{\;\mathrm{d}}
\newcommand{\rDeriv}{\mathop{\partial_+}}
\newcommand{\PathSet}{\mathcal{P}}
\newcommand{\source}{s}
\newcommand{\sink}{t}
\newcommand{\timeHorizon}{[0,T]}
\newcommand{\rateSpace}{L_+^2(\timeHorizon)}
\newcommand{\ql}[1][e]{Q_{#1}}
\]
Equilibria of Dynamic Network Flows
A Brief Overview
Guest lecture at University of Augsburg, 21.11.2025
Lukas Graf, University of Passau
Equilibria in Non-Atomic Selfish Routing
Static Flows
Given: network $G=(V,E)$, source-sink pair $\source,\sink \in V$, set of $\source$,$\sink$-paths $\PathSet$,
Given: traffic rate $r \in \IRnn$, edge-costs $c_e: \IRnn \to \IRnn$
flow:
(f_P)_{P \in \PathSet} \in \IRnn^\PathSet
↧
(f_e)_{e \in E} \in \IRnn^E
travel costs:
(c_P(f))_{P \in \PathSet} \in \IRnn^\PathSet
↥
(c_e(f))_{e \in E} \in \IRnn^E
\mapsto
static flow $f = (f_P)_{P \in \PathSet}$ with $\sum_{P \in \PathSet}f_P = r$ is (Wardrop) equilibrium if
\[\forall P,Q \in \PathSet: f_P \gt 0 \implies C_P(f) \leq C_Q(f)\]
1
2x
x
1
4
\color{var(--flowCol1)}r=2
\color{var(--flowCol1)}s
v
w
\color{var(--flowCol1)}t
Dynamic Flows
Given: network as above, traffic rate $r \in \rateSpace$, path-costs $C: \rateSpace^\PathSet \to C(\timeHorizon)^\PathSet, \class{tempstep a}{\data{tempstep-from=55}{f=(f_P)_{P\in\PathSet}}} \class{tempstep a}{\data{tempstep-from=56}{\mapsto (C_P(f))_{P \in \PathSet}}}$
dynamic flow $f=(f_P)_{P \in \PathSet}\in \rateSpace^\PathSet$ with $\sum_{P \in \PathSet}f_P = r$ is
dynamic equilibrium if
\[\forall P,Q \in \PathSet \,\class{tempstep}{\data{tempstep-classes=59:hl}{\faa \theta \in \timeHorizon}}: f_P(\class{tempstep}{\data{tempstep-classes=59:hl}{\theta}}) \gt 0 \implies C_P(f)(\theta) \leq C_Q(f)(\class{tempstep}{\data{tempstep-classes=59:hl}{\theta}}).\]
Existence?
Properties?
Implementability?
Theorem: For any $r \in \rateSpace$ and any weak-strong continuous $C: \rateSpace^\PathSet \to \rateSpace^\PathSet$ there exists a dynamic equilibrium.
$f\in \rateSpace^\PathSet$ dynamic equilibrium if $\sum_P f_P = r$ and
\[\forall P,Q, \theta: f_P(\theta) \gt 0 \implies C_P(f)(\theta) \leq C_Q(f)(\theta) \tag{$\ast$}.\label{test}\]
Define
$K \coloneqq \set{ f \in \rateSpace^\PathSet \sMid \sum_{P \in \PathSet}f_P = r} \subseteq \rateSpace^\PathSet$
$\Gamma(f) \coloneqq \set{ g \in K \sMid g \text{ satisfies } \eqref{test} \text{ wrt. } C(f)}$
Then: fixed points of $\Gamma$ are dynamic equilibria.
Fixed point exists by Kakutani-Fan-Glicksberg, since
$K$ non-empty, convex, compact wrt. weak topology
$\Gamma(f)$ non-empty, convex
$\Gamma$ has closed graph wrt. weak top. if $C$ is weak-strong continuous
Theorem (Brouwer's Fixed Point Theorem):
$K \subseteq \IR^k$ non-empty, compact, convex
$g: K \to K$ continuous
Then, $\exists x^* \in K: g(x^*) = x^*$ (
fixed point )
Theorem (Kakutani-Fan-Glicksberg Fixed Point Theorem, [AB06 ] ):
$V$ a locally convex Hausdorff space
$K \subseteq V$ non-empty, compact, convex
$\Gamma: K \to \PSet{K}$ has closed graph
$\forall x \in K: \Gamma(x) \subseteq K$ non-empty, convex
Then, $\exists x^* \in K: \class{tempstep}{\data{tempstep-classes=20-22:hl}{\Gamma(x^*) \ni x^*}}$ (
fixed point )
x
g(x)
\color{var(--green)}K
\color{var(--green)}K
\color{var(--mainBlue)}g
\color{var(--red)}x^*
\color{var(--red)}x^*
From now on: instantiate $C_P$ as travel times induced by
Vickrey's deterministic queueing model (
[V69 ] ):
\color{gray}\nu_e
\color{gray}\tau_e
v
w
\ql(\theta) \coloneqq F^+_e(\theta) - F^-_e(\theta+\tau_e)
\coloneqq \int_0^\theta f^+_e(\zeta)\diff\zeta - \int_0^{\theta+\tau_e} f^-_e(\zeta)\diff\zeta
edge in-/outflow rates $f = (f_e^+,f_e^-) \in \rateSpace^{\{\pm\}}$ for edge $e \in E$ with
free flow travel time $\tau_e \in \IRp$
capacity $\nu_e \in \IRp$
form Vickrey flow if queue
starts empty: $\ql(0)=0$
works at capacity: $f_e^-(\theta+\tau_e) = \begin{cases}\nu_e , &\ql(\theta) \gt 0 \\ \min\set{f^+_e(\theta),\nu_e}, &\text{else}\end{cases}$
→ edge travel-time $T_e(\theta) \coloneqq \frac{1}{\nu_e}\ql(\theta)+\tau_e$, edge exit-time $A_e(\theta) \coloneqq \theta + T_e(\theta)$
Lemma: Some properties of Vickrey flows:
existence & uniqueness: $\forall f^+_e \, \exists! f^-_e$
(weak-strong) continuity: $f^+_e \mapsto T_e$
structure-preserving
monotonicity
also hold network-wide:
(f_P) \mapsto (f^+_e,f^-_e)
"network-loading"
\theta
f^+_e(\theta)
\color{var(--flowCol1)}f^+_e
$\mapsto$
\theta
f^-_e(\theta)
\color{var(--flowCol1)}f^-_e
Thm.: $C: \rateSpace^\PathSet \to \rateSpace^\PathSet$ weak-strong continuous
Thm.: $\implies$ $\exists$ dynamic equilibrium
\nu_e=3
\nu_e=1
\nu_e=1
\nu_e=1
\tau_e=5, \nu_e=2
\color{var(--flowCol1)}\ql(\theta)=1
\color{var(--flowCol1)}\ql(\theta)=2.5
\color{var(--flowCol1)}\ql(\theta)=3
\color{var(--flowCol1)}\ql(\theta)=1.5
\color{var(--flowCol1)}\ql(\theta)=2
\color{var(--flowCol1)}r\equiv3
\color{var(--flowCol1)}s
v
w
\color{var(--flowCol1)}t
\color{var(--purple)}5.5
\color{var(--purple)}6.5
\color{var(--purple)}9.5
\color{var(--purple)}10.5
\color{gray}\theta=0\phantom{.0}
\color{gray}\theta=1.5
\color{gray}\theta=4.5
\color{gray}\theta=5.5
Corollary: dynamic equilibria wrt. travel times induced by Vickrey queuing model exist.
$(f_P)$ dynamic equilibrium if $\forall P,Q, \theta: f_P(\theta) \gt 0 \implies C_P(f)(\theta) \leq C_Q(f)(\theta)$
Lemma: $(f_P)$ is dynamic equilibrium (wrt. Vickrey) iff corresponding $(f^+_e,f^-_e)$ satisfies
or $\forall e=vw \in E, \faa \theta \in \timeHorizon: f^+_e(\theta) \gt 0 \implies \theta \in L_v(\Theta_e)$
or $\forall e=vw \in E, \quad\forall \theta \in \timeHorizon: F^+_e(L_v(\theta)) = F^-_e(L_w(\theta))$
where $\class{tempstep}{\data{tempstep-classes=23-27:purple}{L_w(\theta)}} \coloneqq \begin{cases}\theta, &w=\source \\
\min\set{A_e(L_v(\theta)) \sMid e=vw \in E}, &\text{else}\end{cases}$
and $\Theta_e \coloneqq \set{\theta \in \timeHorizon \sMid L_w(\theta) = A_e(L_v(\theta))}$
Observation: $f$ dynamic equilibrium $\implies X_e(\theta) \coloneqq F^+_e(L_v(\theta))$ defines static $\source$,$\sink$-flow of value $\int_0^\theta r(\zeta)\diff\zeta$ (for every $\theta \in \timeHorizon$).
for right-constant $(f^+_e,f^-_e)_{e \in E}$ and any $\theta$ define
$x_e \coloneqq \rDeriv(F^+_e\circ L_v)(\theta)$ and $\ell_v \coloneqq \rDeriv L_v(\theta)$
Theorem ([KS11 , CCL15 , S20 ] ): $f$ dynamic equilibrium iff for all $\theta \in \timeHorizon$ the
vectors $(x_e) \in \IRnn^E$ and $(\ell_v) \in \IR^V$ satisfy:
\begin{align}
\class{tempstep a}{\data{tempstep-from=12}{(x_e)_{e \in E}}} &\class{tempstep a}{\data{tempstep-from=12}{\text{ is $\source$,$\sink$-flow of value } r(\theta)}} \\
\class{tempstep a}{\data{tempstep-from=13}{x_e}} &\class{tempstep a}{\data{tempstep-from=13}{\;= 0}} & \class{tempstep a}{\data{tempstep-from=13}{\text{ f.a. } e \in E \text{ with } \theta \notin \Theta_e}} \\
\class{tempstep a}{\data{tempstep-from=14}{\ell_w}} &\class{tempstep a}{\data{tempstep-from=16}{\;= \begin{cases}1, & w=s \\ \class{tempstep a}{\data{tempstep-from=17}{\min\set{\class{tempstep a}{\data{tempstep-from=18}{\rho_e(\ell_v,x_e)}} \sMid e=vw \text{ with } \theta \in \Theta_e},}} &\class{tempstep a}{\data{tempstep-from=17}{\text{else}}}\end{cases}}} & \class{tempstep a}{\data{tempstep-from=14}{\text{ f.a. } w \in V}} \\
\class{tempstep a}{\data{tempstep-from=24}{\ell_w}} &\class{tempstep a}{\data{tempstep-from=24}{\;= \rho(\ell_v,x_e)}} & \class{tempstep a}{\data{tempstep-from=24}{\text{ f.a. } e=vw \in E \text{ with } x_e \gt 0}}
\end{align}
where $\rho_e(\ell_v,x_e) \class{tempstep a}{\data{tempstep-from=22}{\;= \begin{cases} \frac{x_e}{\nu_e}, &\text{if } e=vw \text{ with } \ql(L_v(\theta)) \gt 0 \\ \max\set{\frac{x_e}{\nu_e},\ell_v}, &\text{if } e=vw \text{ with } \ql(L_v(\theta)) = 0 \end{cases}}}$ is derivative of $A_e(L_v(\theta))$.
$A_e(\zeta) = \zeta + T_e(\zeta) = \zeta + \frac{1}{\nu_e}\ql(\zeta) + \tau_e$
$\implies \rDeriv A_e(\zeta) = 1 + \frac{1}{\nu_e}\rDeriv\ql(\zeta)$
$\rDeriv \ql(\zeta) = \begin{cases}f^+_e(\zeta) - \nu_e, &\ql(\zeta) \gt 0 \\ \max\set{f^+_e(\zeta)-\nu_e,0}, &\text{else}\end{cases}$
↳ $(x,\ell)$ thin flow (with resetting)
Lemma: thin flows with resetting exist and are unique wrt. $\ell$.
Kakutani mmm
Now: $C_P =$ sum of travel times $T_e$ and edge tolls $p_e: \timeHorizon \to \IRnn$ ⤳ tolled equilibrium
\nu_e=2, \color{var(--red)}p_e=2
\nu_e=1
\nu_e=2
\nu_e=2
\color{var(--flowCol1)}r\equiv2
\color{var(--flowCol1)}s
v
w
\color{var(--flowCol1)}t
\nu_e=2, \color{var(--red)}p_e=2
\nu_e=1
\nu_e=2
\nu_e=2
\color{var(--flowCol1)}r\equiv2
\color{var(--flowCol1)}s
v
w
\color{var(--flowCol1)}t
Lemma ([RSVK25 ] ): tolled equilibria are not unique (wrt. travel times)
\color{var(--flowCol1)}s
\color{var(--flowCol1)}t
\color{var(--flowCol1)}s
\color{var(--flowCol1)}t
\color{var(--flowCol1)}s
\color{var(--flowCol1)}t
\color{var(--flowCol1)}s
\color{var(--flowCol1)}t
\color{var(--red)}p_e=1
\color{var(--red)}1
\color{var(--red)}\infty
\color{var(--red)}\infty
\color{var(--purple)}0
\color{var(--purple)}1
\color{var(--purple)}2
\color{var(--purple)}4
\color{var(--purple)}3
\color{var(--purple)}5
\color{var(--purple)}6
Theorem ([GHS25a ] ): every dynamic flow
without outflow from sink is
Theorem ([GHS25a] ): implementable (=tolled equilibrium wrt. some tolls)
"Corollary" ([GHS25b ] ): socially optimal Vickrey flows are implementable.
monotonicity of Vickrey flows!
But for multi-commodity instances...
{\color{var(--flowCol2)}\source_2}
\color{var(--flowCol2)}r_2=1_{[4,5]}
{\color{var(--flowCol4)}\sink_4}
\phantom{\sink_3/}{\color{var(--flowCol1)}\source_1}
\color{var(--flowCol1)}r_1=1_{[7,13+M]}
{\color{var(--flowCol3)}\sink_3}/\phantom{\source_1}
{\color{var(--flowCol1)}\sink_1}/{\color{var(--flowCol2)}\sink_2}
{\color{var(--flowCol4)}\source_4}
\color{var(--flowCol4)}r_4=2\cdot 1_{[9,13+M]}
\phantom{\sink_5/}{\color{var(--flowCol3)}\source_3}
\color{var(--flowCol3)}r_3=2\cdot 1_{[2,3]}
{\color{var(--flowCol5)}\sink_5}/\phantom{\source_3}
{\color{var(--flowCol5)}\source_5}
\color{var(--flowCol5)}r_5=6\cdot 1_{[0,1]}
A network with
one flow without outflow from sinks
which is strictly better than
any flow with outflow from sinks
Theorem ([GHS25b ] ):
In multi-commodity instances
socially optimal flows are
not always implementable.
References/Further Reading
[AB06]
Aliprantis, Border. Infinite Dimensional Analysis. A Hitchhiker’s Guide , 2006; DOI: 10.1007/3-540-29587-9
[CCL15]
Cominetti, Correa, Larre. Dynamic Equilibria in Fluid Queueing Networks , OPRE, 2015; DOI: 10.1287/opre.2015.1348
[CCO21a]
Cominetti, Correa, Olver. Long-Term Behavior of Dynamic Equilibria in Fluid Queuing Networks , OPRE, 2021; DOI: 10.1287/opre.2020.2081
[CCO21b]
Correa, Cristi, Oosterwijk. On the Price of Anarchy for Flows over Time , MOOR, 2021; DOI: 10.1287/moor.2021.1173
[GH24]
Graf, Harks. Dynamic Network Flows , lecture notes, 2024; available at https://git.fim.uni-passau.de/
[GHS25a]
Graf, Harks, Schwarz. Tolls for Dynamic Equilibrium Flows , SODA, 2025; DOI: 10.1137/1.9781611978322.84
[GHS25b]
Graf, Harks, Schwarz. Are System Optimal Dynamic Flows Implementable by Tolls? , EC, 2025; arXiv: arXiv:2503.07387
[KS11]
Koch, Skutella. Nash Equilibria and the Price of Anarchy for Flows over Time , 2011; DOI: 10.1007/s00224-010-9299-y
[OSVK21]
Olver, Sering, Vargas Koch. Continuity, Uniqueness and Long-Term Behavior of Nash Flows Over Time , FOCS, 2021; DOI: 10.1109/FOCS52979.2021.00087
[RSVK25]
Rosner, Schröder, Vargas Koch. Nash Flows Over Time with Tolls , WINE, 2025; arXiv: arXiv:2510.13518
[S09]
Skutella. An Introduction to Network Flows over Time , 2009; DOI: 10.1007/978-3-540-76796-1_21
[S20]
Sering. Nash flows over time , PhD Thesis, 2020; DOI: 10.14279/depositonce-10640
[V69]
Vickrey. Congestion Theory and Transport Investment , 1969; available at: jstor.org/stable/1823678
Equilibria of Dynamic Network Flows (Guest Lecture), §0 Introduction
Lukas Graf (lukas.graf@uni-passau.de)
Equilibria of Dynamic Network Flows (Guest Lecture), §1 Existence
Lukas Graf (lukas.graf@uni-passau.de)
Equilibria of Dynamic Network Flows (Guest Lecture), §2 Properties
Lukas Graf (lukas.graf@uni-passau.de)
Equilibria of Dynamic Network Flows (Guest Lecture), §3 Implementability
Lukas Graf (lukas.graf@uni-passau.de)