Your browser doesn't support the features required by impress.js, so you are presented with a simplified version of this presentation.

For the best experience please use the latest Chrome, Safari or Firefox browser.

\[ \newcommand{\IR}{\mathbb{R}} \newcommand{\IRnn}{\IR_{\geq 0}} \newcommand{\IRp}{\IR_{\gt 0}} \newcommand{\IN}{\mathbb{N}} \newcommand{\INo}{\IN_0} \newcommand{\INs}{\IN^\ast} \newcommand{\coloneqq}{\mathbin{:=}} \newcommand{\eqqcolon}{\mathbin{=:}} \newcommand{\coloniff}{\mathbin{:\!\!\iff}} \newcommand{\faa}{\mathbin{\forall_{\!\mathrm{a.a.}}}} \newcommand{\dcup}{\mathbin{\dot\cup}} \newcommand{\sMid}{\,|\,} \newcommand{\Set}[1]{\left\lbrace#1\right\rbrace} \newcommand{\SMid}{\,\middle|\,} \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\Abs}[1]{\left\lvert#1\right\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\Norm}[1]{\left\lVert#1\right\rVert} \newcommand{\PSet}[1]{2^{#1}} \newcommand{\transp}{^\top} \newcommand{\eps}{\varepsilon} \newcommand{\diff}{\;\mathrm{d}} \newcommand{\rDeriv}{\mathop{\partial_+}} \newcommand{\PathSet}{\mathcal{P}} \newcommand{\source}{s} \newcommand{\sink}{t} \newcommand{\timeHorizon}{[0,T]} \newcommand{\rateSpace}{L_+^2(\timeHorizon)} \newcommand{\ql}[1][e]{Q_{#1}} \]

Equilibria of Dynamic Network Flows

A Brief Overview

PDF version (static) | code
Guest lecture at University of Augsburg, 21.11.2025
Lukas Graf, University of Passau

Equilibria in Non-Atomic Selfish Routing

Static Flows

Given: network $G=(V,E)$, source-sink pair $\source,\sink \in V$, set of $\source$,$\sink$-paths $\PathSet$,
Given: traffic rate $r \in \IRnn$, edge-costs $c_e: \IRnn \to \IRnn$
flow: (f_P)_{P \in \PathSet} \in \IRnn^\PathSet (f_e)_{e \in E} \in \IRnn^E travel costs: (c_P(f))_{P \in \PathSet} \in \IRnn^\PathSet (c_e(f))_{e \in E} \in \IRnn^E \mapsto
static flow $f = (f_P)_{P \in \PathSet}$ with $\sum_{P \in \PathSet}f_P = r$ is (Wardrop) equilibrium if \[\forall P,Q \in \PathSet: f_P \gt 0 \implies C_P(f) \leq C_Q(f)\]
1 2x x 1 4 \color{var(--flowCol1)}r=2 \color{var(--flowCol1)}s v w \color{var(--flowCol1)}t

Dynamic Flows

Given:   network as above, traffic rate $r \in \rateSpace$, path-costs $C: \rateSpace^\PathSet \to C(\timeHorizon)^\PathSet, \class{tempstep a}{\data{tempstep-from=55}{f=(f_P)_{P\in\PathSet}}} \class{tempstep a}{\data{tempstep-from=56}{\mapsto (C_P(f))_{P \in \PathSet}}}$
dynamic flow $f=(f_P)_{P \in \PathSet}\in \rateSpace^\PathSet$ with $\sum_{P \in \PathSet}f_P = r$ is dynamic equilibrium if
\[\forall P,Q \in \PathSet \,\class{tempstep}{\data{tempstep-classes=59:hl}{\faa \theta \in \timeHorizon}}: f_P(\class{tempstep}{\data{tempstep-classes=59:hl}{\theta}}) \gt 0 \implies C_P(f)(\theta) \leq C_Q(f)(\class{tempstep}{\data{tempstep-classes=59:hl}{\theta}}).\]

Existence?

Properties?

Implementability?

Theorem: For any $r \in \rateSpace$ and any weak-strong continuous $C: \rateSpace^\PathSet \to \rateSpace^\PathSet$ there exists a dynamic equilibrium.
$f\in \rateSpace^\PathSet$ dynamic equilibrium if $\sum_P f_P = r$ and \[\forall P,Q, \theta: f_P(\theta) \gt 0 \implies C_P(f)(\theta) \leq C_Q(f)(\theta) \tag{$\ast$}.\label{test}\]
Define
  • $K \coloneqq \set{ f \in \rateSpace^\PathSet \sMid \sum_{P \in \PathSet}f_P = r} \subseteq \rateSpace^\PathSet$
  • $\Gamma(f) \coloneqq \set{ g \in K \sMid g \text{ satisfies } \eqref{test} \text{ wrt. } C(f)}$
Then: fixed points of $\Gamma$ are dynamic equilibria.
Fixed point exists by Kakutani-Fan-Glicksberg, since
  • $K$ non-empty, convex, compact wrt. weak topology
  • $\Gamma(f)$ non-empty, convex
  • $\Gamma$ has closed graph wrt. weak top. if $C$ is weak-strong continuous
Theorem (Brouwer's Fixed Point Theorem):
  • $K \subseteq \IR^k$ non-empty, compact, convex
  • $g: K \to K$ continuous
Then, $\exists x^* \in K: g(x^*) = x^*$ (fixed point)
Theorem (Kakutani-Fan-Glicksberg Fixed Point Theorem, [AB06]):
  • $V$ a locally convex Hausdorff space
  • $K \subseteq V$ non-empty, compact, convex
  • $\Gamma: K \to \PSet{K}$ has closed graph
  • $\forall x \in K: \Gamma(x) \subseteq K$ non-empty, convex
Then, $\exists x^* \in K: \class{tempstep}{\data{tempstep-classes=20-22:hl}{\Gamma(x^*) \ni x^*}}$ (fixed point)
x g(x) \color{var(--green)}K \color{var(--green)}K \color{var(--mainBlue)}g \color{var(--red)}x^* \color{var(--red)}x^*
From now on: instantiate $C_P$ as travel times induced by Vickrey's deterministic queueing model ([V69]):
\color{gray}\nu_e \color{gray}\tau_e v w \ql(\theta) \coloneqq F^+_e(\theta) - F^-_e(\theta+\tau_e) \coloneqq \int_0^\theta f^+_e(\zeta)\diff\zeta - \int_0^{\theta+\tau_e} f^-_e(\zeta)\diff\zeta
edge in-/outflow rates $f = (f_e^+,f_e^-) \in \rateSpace^{\{\pm\}}$ for edge $e \in E$ with
  • free flow travel time $\tau_e \in \IRp$
  • capacity $\nu_e \in \IRp$
form Vickrey flow if queue
  • starts empty: $\ql(0)=0$
  • works at capacity: $f_e^-(\theta+\tau_e) = \begin{cases}\nu_e , &\ql(\theta) \gt 0 \\ \min\set{f^+_e(\theta),\nu_e}, &\text{else}\end{cases}$
→ edge travel-time $T_e(\theta) \coloneqq \frac{1}{\nu_e}\ql(\theta)+\tau_e$,   edge exit-time $A_e(\theta) \coloneqq \theta + T_e(\theta)$
Lemma: Some properties of Vickrey flows:
  • existence & uniqueness: $\forall f^+_e \, \exists! f^-_e$
  • (weak-strong) continuity: $f^+_e \mapsto T_e$
  • structure-preserving
  • monotonicity
also hold network-wide: (f_P) \mapsto (f^+_e,f^-_e) "network-loading"
\theta f^+_e(\theta) \color{var(--flowCol1)}f^+_e
$\mapsto$
\theta f^-_e(\theta) \color{var(--flowCol1)}f^-_e
Thm.: $C: \rateSpace^\PathSet \to \rateSpace^\PathSet$ weak-strong continuous
Thm.:   $\implies$ $\exists$ dynamic equilibrium
\nu_e=3 \nu_e=1 \nu_e=1 \nu_e=1 \tau_e=5, \nu_e=2 \color{var(--flowCol1)}\ql(\theta)=1 \color{var(--flowCol1)}\ql(\theta)=2.5 \color{var(--flowCol1)}\ql(\theta)=3 \color{var(--flowCol1)}\ql(\theta)=1.5 \color{var(--flowCol1)}\ql(\theta)=2 \color{var(--flowCol1)}r\equiv3 \color{var(--flowCol1)}s v w \color{var(--flowCol1)}t \color{var(--purple)}5.5 \color{var(--purple)}6.5 \color{var(--purple)}9.5 \color{var(--purple)}10.5 \color{gray}\theta=0\phantom{.0} \color{gray}\theta=1.5 \color{gray}\theta=4.5 \color{gray}\theta=5.5
Corollary: dynamic equilibria wrt. travel times induced by Vickrey queuing model exist.
$(f_P)$ dynamic equilibrium if
$\forall P,Q, \theta: f_P(\theta) \gt 0 \implies C_P(f)(\theta) \leq C_Q(f)(\theta)$
Lemma: $(f_P)$ is dynamic equilibrium (wrt. Vickrey) iff corresponding $(f^+_e,f^-_e)$ satisfies
  1. or $\forall e=vw \in E, \faa \theta \in \timeHorizon: f^+_e(\theta) \gt 0 \implies \theta \in L_v(\Theta_e)$
  2. or $\forall e=vw \in E, \quad\forall \theta \in \timeHorizon: F^+_e(L_v(\theta)) = F^-_e(L_w(\theta))$
where $\class{tempstep}{\data{tempstep-classes=23-27:purple}{L_w(\theta)}} \coloneqq \begin{cases}\theta, &w=\source \\ \min\set{A_e(L_v(\theta)) \sMid e=vw \in E}, &\text{else}\end{cases}$
    and $\Theta_e \coloneqq \set{\theta \in \timeHorizon \sMid L_w(\theta) = A_e(L_v(\theta))}$
Observation: $f$ dynamic equilibrium $\implies X_e(\theta) \coloneqq F^+_e(L_v(\theta))$ defines static $\source$,$\sink$-flow of value $\int_0^\theta r(\zeta)\diff\zeta$ (for every $\theta \in \timeHorizon$).
for right-constant $(f^+_e,f^-_e)_{e \in E}$ and any $\theta$ define   $x_e \coloneqq \rDeriv(F^+_e\circ L_v)(\theta)$   and   $\ell_v \coloneqq \rDeriv L_v(\theta)$
Theorem ([KS11, CCL15, S20]): $f$ dynamic equilibrium iff for all $\theta \in \timeHorizon$ the vectors $(x_e) \in \IRnn^E$ and $(\ell_v) \in \IR^V$ satisfy: \begin{align} \class{tempstep a}{\data{tempstep-from=12}{(x_e)_{e \in E}}} &\class{tempstep a}{\data{tempstep-from=12}{\text{ is $\source$,$\sink$-flow of value } r(\theta)}} \\ \class{tempstep a}{\data{tempstep-from=13}{x_e}} &\class{tempstep a}{\data{tempstep-from=13}{\;= 0}} & \class{tempstep a}{\data{tempstep-from=13}{\text{ f.a. } e \in E \text{ with } \theta \notin \Theta_e}} \\ \class{tempstep a}{\data{tempstep-from=14}{\ell_w}} &\class{tempstep a}{\data{tempstep-from=16}{\;= \begin{cases}1, & w=s \\ \class{tempstep a}{\data{tempstep-from=17}{\min\set{\class{tempstep a}{\data{tempstep-from=18}{\rho_e(\ell_v,x_e)}} \sMid e=vw \text{ with } \theta \in \Theta_e},}} &\class{tempstep a}{\data{tempstep-from=17}{\text{else}}}\end{cases}}} & \class{tempstep a}{\data{tempstep-from=14}{\text{ f.a. } w \in V}} \\ \class{tempstep a}{\data{tempstep-from=24}{\ell_w}} &\class{tempstep a}{\data{tempstep-from=24}{\;= \rho(\ell_v,x_e)}} & \class{tempstep a}{\data{tempstep-from=24}{\text{ f.a. } e=vw \in E \text{ with } x_e \gt 0}} \end{align} where $\rho_e(\ell_v,x_e) \class{tempstep a}{\data{tempstep-from=22}{\;= \begin{cases} \frac{x_e}{\nu_e}, &\text{if } e=vw \text{ with } \ql(L_v(\theta)) \gt 0 \\ \max\set{\frac{x_e}{\nu_e},\ell_v}, &\text{if } e=vw \text{ with } \ql(L_v(\theta)) = 0 \end{cases}}}$ is derivative of $A_e(L_v(\theta))$.
$A_e(\zeta) = \zeta + T_e(\zeta) = \zeta + \frac{1}{\nu_e}\ql(\zeta) + \tau_e$
$\implies \rDeriv A_e(\zeta) = 1 + \frac{1}{\nu_e}\rDeriv\ql(\zeta)$
$\rDeriv \ql(\zeta) = \begin{cases}f^+_e(\zeta) - \nu_e, &\ql(\zeta) \gt 0 \\ \max\set{f^+_e(\zeta)-\nu_e,0}, &\text{else}\end{cases}$
↳ $(x,\ell)$ thin flow (with resetting)
Lemma: thin flows with resetting exist and are unique wrt. $\ell$.
Kakutani mmm
"Corollary": Existence [CCL15], Uniqueness [CCL15,OSVK21],
"Corollary": Stable State [CCO21a, OSVK21], Convergence [OSVK21], PoA [KS11, CCO21b], ...
Now: $C_P =$ sum of travel times $T_e$ and edge tolls $p_e: \timeHorizon \to \IRnn$   ⤳   tolled equilibrium
\nu_e=2, \color{var(--red)}p_e=2 \nu_e=1 \nu_e=2 \nu_e=2 \color{var(--flowCol1)}r\equiv2 \color{var(--flowCol1)}s v w \color{var(--flowCol1)}t \nu_e=2, \color{var(--red)}p_e=2 \nu_e=1 \nu_e=2 \nu_e=2 \color{var(--flowCol1)}r\equiv2 \color{var(--flowCol1)}s v w \color{var(--flowCol1)}t
Lemma ([RSVK25]): tolled equilibria are not unique (wrt. travel times)
\color{var(--flowCol1)}s \color{var(--flowCol1)}t \color{var(--flowCol1)}s \color{var(--flowCol1)}t \color{var(--flowCol1)}s \color{var(--flowCol1)}t \color{var(--flowCol1)}s \color{var(--flowCol1)}t \color{var(--red)}p_e=1 \color{var(--red)}1 \color{var(--red)}\infty \color{var(--red)}\infty \color{var(--purple)}0 \color{var(--purple)}1 \color{var(--purple)}2 \color{var(--purple)}4 \color{var(--purple)}3 \color{var(--purple)}5 \color{var(--purple)}6
Theorem ([GHS25a]): every dynamic flow without outflow from sink is
Theorem ([GHS25a]): implementable (=tolled equilibrium wrt. some tolls)
"Corollary" ([GHS25b]): socially optimal Vickrey flows are implementable.
monotonicity of Vickrey flows!
But for multi-commodity instances...
{\color{var(--flowCol2)}\source_2} \color{var(--flowCol2)}r_2=1_{[4,5]} {\color{var(--flowCol4)}\sink_4} \phantom{\sink_3/}{\color{var(--flowCol1)}\source_1} \color{var(--flowCol1)}r_1=1_{[7,13+M]} {\color{var(--flowCol3)}\sink_3}/\phantom{\source_1} {\color{var(--flowCol1)}\sink_1}/{\color{var(--flowCol2)}\sink_2} {\color{var(--flowCol4)}\source_4} \color{var(--flowCol4)}r_4=2\cdot 1_{[9,13+M]} \phantom{\sink_5/}{\color{var(--flowCol3)}\source_3} \color{var(--flowCol3)}r_3=2\cdot 1_{[2,3]} {\color{var(--flowCol5)}\sink_5}/\phantom{\source_3} {\color{var(--flowCol5)}\source_5} \color{var(--flowCol5)}r_5=6\cdot 1_{[0,1]}
A network with
  one flow without outflow from sinks
which is strictly better than
  any flow with outflow from sinks
Theorem ([GHS25b]): In multi-commodity instances
socially optimal flows are not always implementable.

References/Further Reading

[AB06] Aliprantis, Border. Infinite Dimensional Analysis. A Hitchhiker’s Guide, 2006; DOI: 10.1007/3-540-29587-9
[CCL15] Cominetti, Correa, Larre. Dynamic Equilibria in Fluid Queueing Networks, OPRE, 2015; DOI: 10.1287/opre.2015.1348
[CCO21a] Cominetti, Correa, Olver. Long-Term Behavior of Dynamic Equilibria in Fluid Queuing Networks, OPRE, 2021; DOI: 10.1287/opre.2020.2081
[CCO21b] Correa, Cristi, Oosterwijk. On the Price of Anarchy for Flows over Time, MOOR, 2021; DOI: 10.1287/moor.2021.1173
[GH24] Graf, Harks. Dynamic Network Flows, lecture notes, 2024; available at https://git.fim.uni-passau.de/
[GHS25a] Graf, Harks, Schwarz. Tolls for Dynamic Equilibrium Flows, SODA, 2025; DOI: 10.1137/1.9781611978322.84
[GHS25b] Graf, Harks, Schwarz. Are System Optimal Dynamic Flows Implementable by Tolls?, EC, 2025; arXiv: arXiv:2503.07387
[KS11] Koch, Skutella. Nash Equilibria and the Price of Anarchy for Flows over Time, 2011; DOI: 10.1007/s00224-010-9299-y
[OSVK21] Olver, Sering, Vargas Koch. Continuity, Uniqueness and Long-Term Behavior of Nash Flows Over Time, FOCS, 2021; DOI: 10.1109/FOCS52979.2021.00087
[RSVK25] Rosner, Schröder, Vargas Koch. Nash Flows Over Time with Tolls, WINE, 2025; arXiv: arXiv:2510.13518
[S09] Skutella. An Introduction to Network Flows over Time, 2009; DOI: 10.1007/978-3-540-76796-1_21
[S20] Sering. Nash flows over time, PhD Thesis, 2020; DOI: 10.14279/depositonce-10640
[V69] Vickrey. Congestion Theory and Transport Investment, 1969; available at: jstor.org/stable/1823678
Equilibria of Dynamic Network Flows (Guest Lecture)
Lukas Graf (lukas.graf@uni-passau.de)
Equilibria of Dynamic Network Flows (Guest Lecture), §0 Introduction
Lukas Graf (lukas.graf@uni-passau.de)
Equilibria of Dynamic Network Flows (Guest Lecture), §1 Existence
Lukas Graf (lukas.graf@uni-passau.de)
Equilibria of Dynamic Network Flows (Guest Lecture), §2 Properties
Lukas Graf (lukas.graf@uni-passau.de)
Equilibria of Dynamic Network Flows (Guest Lecture), §3 Implementability
Lukas Graf (lukas.graf@uni-passau.de)
Equilibria of Dynamic Network Flows (Guest Lecture)
LukasMGraf.de
Lukas Graf (lukas.graf@uni-passau.de)