\(
    \newcommand{\IN}{\mathbb{N}}
	\newcommand{\INs}{\mathbb{N}^\ast}
	\newcommand{\INo}{\mathbb{N}_0}
    \newcommand{\IZ}{\mathbb{Z}}
    \newcommand{\IRnn}{\IR_{\geq 0}}
	\newcommand{\IRsp}{\IR_{\gt 0}}
	\newcommand{\IR}{\mathbb{R}}
    \newcommand{\IC}{\mathbb{C}}
    \newcommand{\A}{\mathcal{A}}
    \newcommand{\B}{\mathcal{B}}
    \newcommand{\U}{\mathfrak{U}}
    \newcommand{\coloneqq}{:=}
	\newcommand{\coloniff}{:\iff}
	
    \newcommand{\Set}[1]{\left\{#1\right\}}
	\newcommand{\SMid}{\,\middle|\,}
	\newcommand{\set}[1]{\{#1\}}
	\newcommand{\smid}{\,|\,}
	
	\newcommand{\PSet}[1]{2^{#1}}
	
	
    \newcommand{\supp}{\mathrm{supp}}
	
	
	
	\newcommand{\dist}[2]{\mathrm{dist}^c_{#1}(#2)}
	\newcommand{\dists}[2]{{\mathrm{dist}^c_{#1}}'(#2)}
	\newcommand{\Ind}{{\Large\raise{0pt}{\unicode{x1D7D9}}\,}}
	\newcommand{\bigO}{\mathcal{O}}	
	\newcommand{\abs}[1]{\left|#1\right|}
	\newcommand{\norm}[1]{\left\|#1\right\|}
	\newcommand{\scalar}[2]{\left\langle #1,#2 \right\rangle}
	
	\newcommand{\rDeriv}{\partial_+}
	\newcommand{\lDeriv}{\partial_-}
	\newcommand{\queue}{q}	
	\newcommand{\Pc}{\mathcal{P}}
	\newcommand{\Wc}{\mathcal{W}}
	
	\newcommand{\diff}{\mathrm{d}}
	\newcommand{\eps}{\varepsilon}
	
	\newcommand{\ql}[1][e]{Q_{#1}}
	
	\newcommand{\fvals}[1]{\mathrm{value}(#1)}
	\newcommand{\fval}[1]{\mathrm{value}(#1)}
	\newcommand{\ccaps}[1]{\mathrm{capacity}(#1)}
	\newcommand{\fcosts}[1]{\mathrm{cost}(#1)}
	\newcommand{\edgesFrom}[1]{\delta^+(#1)}
	\newcommand{\edgesTo}[1]{\delta^-(#1)}
	
	\newcommand{\PathSet}{\mathcal{P}}
	\newcommand{\CycleSet}{\mathcal{C}}
  \)
	Slides used in the lecture (step through with ← and →):
	
	Dynamic Network Flows - Lecture Slides
	Lukas Graf (lukas.graf@uni-passau.de)