\(
\newcommand{\IN}{\mathbb{N}}
\newcommand{\INs}{\mathbb{N}^\ast}
\newcommand{\INo}{\mathbb{N}_0}
\newcommand{\IZ}{\mathbb{Z}}
\newcommand{\IRnn}{\IR_{\geq 0}}
\newcommand{\IRsp}{\IR_{\gt 0}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\U}{\mathfrak{U}}
\newcommand{\coloneqq}{:=}
\newcommand{\coloniff}{:\iff}
\newcommand{\Set}[1]{\left\{#1\right\}}
\newcommand{\SMid}{\,\middle|\,}
\newcommand{\set}[1]{\{#1\}}
\newcommand{\smid}{\,|\,}
\newcommand{\PSet}[1]{2^{#1}}
\newcommand{\supp}{\mathrm{supp}}
\newcommand{\dist}[2]{\mathrm{dist}^c_{#1}(#2)}
\newcommand{\dists}[2]{{\mathrm{dist}^c_{#1}}'(#2)}
\newcommand{\Ind}{{\Large\raise{0pt}{\unicode{x1D7D9}}\,}}
\newcommand{\bigO}{\mathcal{O}}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\norm}[1]{\left\|#1\right\|}
\newcommand{\scalar}[2]{\left\langle #1,#2 \right\rangle}
\newcommand{\rDeriv}{\partial_+}
\newcommand{\lDeriv}{\partial_-}
\newcommand{\queue}{q}
\newcommand{\Pc}{\mathcal{P}}
\newcommand{\Wc}{\mathcal{W}}
\newcommand{\diff}{\mathrm{d}}
\newcommand{\eps}{\varepsilon}
\newcommand{\ql}[1][e]{Q_{#1}}
\newcommand{\fvals}[1]{\mathrm{value}(#1)}
\newcommand{\fval}[1]{\mathrm{value}(#1)}
\newcommand{\ccaps}[1]{\mathrm{capacity}(#1)}
\newcommand{\fcosts}[1]{\mathrm{cost}(#1)}
\newcommand{\edgesFrom}[1]{\delta^+(#1)}
\newcommand{\edgesTo}[1]{\delta^-(#1)}
\newcommand{\PathSet}{\mathcal{P}}
\newcommand{\CycleSet}{\mathcal{C}}
\)
Slides used in the lecture (step through with ← and →):
Dynamic Network Flows - Lecture Slides
Lukas Graf (lukas.graf@uni-passau.de)